Tag Archives: Discovered

Discovered: Solid Buckyballs In Space!

They were popularized by being compared to nanoscale footballs, made up of a large number of carbon atoms. However, no one thought that they were as ubiquitous as the latest Spitzer results suggest them to be. They are called Buckminsterfullerene, or more commonly, buckyballs, after the architect, Buckminster Fuller, whose geodesic designs resemble these natural structures.

A C-60 buckminsterfullerene

Spitzer discovers buckyballs

Enter Spitzer, the premier infrared satellite in the world right now. It roams around in space in an orbit around the Earth, since the atmosphere would block most of the infrared radiation. It has recently caught buckyballs around the double star system XX Ophiuchi. What’s more, the buckyballs are in solid form, and this can be easily figured out since the diffuse gaseous form gives a different absorptions spectrum compared to the solid one.

This is the first detection of solid buckyballs in space. Incidentally, the relatively wide presence of buckyballs in space was established by Spitzer itself in 2010.

Buckyballs are quite useful here on earth. They are extremely resistant to heat, pressure and chemical action. They have been thought to be shrink wraps, with the buckyballs acting as ‘cages’. Furthermore, their high tensile strength can be utilized in things like armour.

Buckyballs in space. An artist's impression (Courtesy: JPL/NASA)

More carbon, better it is!

Buckyballs being found in outer space means that there is much more carbon in space than previously thought. Scientist think that this allotrope of carbon might indicate that more common allotropes like graphite might be present.

Mike Werner, NASA’s Spitzer telescope project scientist currently at JPL, Pasadena, California, says:

This exciting result suggests that buckyballs are even more widespread in space than the earlier Spitzer results showed. They may be an important form of carbon, an essential building block for life, throughout the cosmos.

The story appears in the Monthly Notices of the Royal Astronomical Society. Just before you leave us to do more mundane terrestrial stuff here’s a nice video, courtesy Space.com.

Discovered: An Exotic Form of Matter – Hypernucleus!

Exotic is the word! Italian physicists have discovered traces of rare nuclei containing an exotic form of matter – hyperons. They have just discovered a hydrogen nucleus with 6 nucleons, which includes 4 neutrons, 1 proton (and thus hydrogen) and one uncharged hyperon called lambda!!

The exotic side of the Universe

Hyperons are particles, which are made up of quarks, just like protons. But, unlike protons, they are short-lived, much heavier and contain the so-called strange quark. They are thus called strange baryons! If a nucleus contains such hyperons, the nucleus is called ‘hypernucleus’.

The Italian scientists have found a hypernucleus called ‘hydrogen six Lambda’ (6ΛH, Λ=Greek letter, Lambda), which means that it is a hydrogen nucleus (i.e. has 1 proton), with six nucleons altogether (i.e. 5 particles other than the proton) and that one of them is the Lambda baryon. This says that the other four particles are all neutrons. The 6ΛH was predicted in 1963, but only now have physicists at Instituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati (INFN-LNF) working on this experiment called FINUDA found a signature of it. The finding is due to appear in an issue of the Physical Review Letters (PRL).

The hyperon makes it possible to detect this hydrogen nucleus having as many as 4 neutrons. Hydrogen five (5H), i.e. without the Lambda, exists for just 10-22 s, which is too short to measure leave alone trap and study the nucleus. The presence of the strange particle boosts the lifetime by a factor of a trillion, taking it to 0.1 nanosecond, which is long enough for physicists to measure and study. Note that this timescale is still way too small for daily life!

Producing the hyperhydrogen

The hyperhydrogen is produced in an indirect way. The FUNIDA collider collides electron-positron beams. This gives rise to a phi-meson (with a small probability). This phi-meson can decay into two other mesons – the K meson and the anti-K meson. When the anti K-meson (which contains a strange quark) interacts with a lithium nucleus, it can produce a 6ΛH and pi-plus meson. When physicists detect the pi-plus meson, they know that a 6ΛH has been created.

Producing hyperhydrogen (Courtesy: FUNIDA experiment collboration)

FUNIDA experiments have also been able to produce 4ΛH, having 2 neutrons. They are produced more readily than 6ΛH and can be studied with greater ease as they exist for a longer time than the 6ΛH.

Clues into strangeness

Physicists are hoping that such studies will yield valuable clues into the nature of strange forms of matter. Another interesting challenge will be to synthesize nuclei having two strange particles, rather than just one! Producing helium or lithium nuclei with strange particle is also on the cards.

If you have a technical bent of mind, here is the link to the PRL paper: http://prl.aps.org/abstract/PRL/v108/i4/e042501 (If you’re not affiliated to an institute having a PRL account, you’ll have to buy the paper to read it.)

Breakthrough: Wondrous NASA Biocapsule To Protect Astronauts In Space and Lives on Earth!

The health of men being sent to space has always been a huge concern for space organizations, and NASA has come up with a solution that borders on the edge of being a miracle. NASA has made the NASA Biocapsule – a tangle of carbon nanotubes that will be used to contain particular cells and even medicinal substances inside it. It’s tiny, inserted into the skin, non-reactive, fast-acting and virtually indestructible!

The biocapsule. Courtesy: gizmodo.com

How it works

This is how this contraption works – A small incision is made on the body of the astronaut, barely skin deep. The nanotube, along with whatever package it is wrapped around, is then inserted subcutaneously. The wound is then either stitched up with a couple of stitches and the astronaut is good to go!

The Biocapsule has been made by Space Biosciences Division at NASA Ames, like all other medical technology made exclusively for NASA. Dr. David Loftus has been awarded a patent for leading the group, which came up with this creation.

The Biocapsule might contain cells, which can dispense hormones should the body require it. For example, if one is diabetic, or if one develops such a condition during a long stay in outer space, the capsule might contain pancreatic islet cells (or some cells which behave like these). Should the body need insulin, the cells will detect the low amounts in the blood and automatically start secretion. Dr. Loftus explains:

The capsule would contain pancreatic islet cells (from animals) or would contain engineered cells designed to behave like pancreatic islet cells, with both glucose-sensing and insulin secretion function. Patients with low-insulin requirement might benefit from implantation of a single capsule (containing perhaps a million to 10 million cells); patients with higher insulin requirement might require implantation of more than one capsule.

The Biocapsules can handle diseases as serious as radiation sickness. The Biocapsules can be used to contain cells that release the hormone G-CSF (Granulocyte colony-stimulating factor), which is a standard treatment for cancer patients undergoing radiation therapy so that they don’t develop any side-effects. Cells capable to detecting high exposure can be planted inside these Biocapsules and these will discharge the G-CSF hormone when triggered by the high radiation dose.

The Best Aspect of it all!

Now here is the coolest aspect of this miracle – it can be easily used on Earth! This is a potential explosive keg of medical revolution having the size of a few microns. It can save millions of lives on Earth, were it to go public! This might even be used to administer very local dosages of substances, which might be harmful to other organs, if it spreads.

With the closest doctor being a few thousand kilometers away, the tiny bundle of security might be the life of an astronaut. Literally!

10-Year Old Girl Accidentally Discovers A New Explosive Molecule, Co-Authors A Paper

When they mean young blood in science, they aren’t kidding. Let me introduce the molecule tetranitratoxycarbon, a compound containing nitrogen, carbon and oxygen. The molecule might be usable as an explosive. Further, it is not listed in the Humboldt State University (HSU) database and can, thus, be classified as a completely new molecule. Now, allow me to introduce to you the discoverer of the molecule – 10 yr old Clara Lazen of Kansas City!

Prof. Robert Zoellner of HSU standing with a ball-and-stick model of the molecule that Clara made. (Courtesy: gizmodo.com)

Just another fifth grader – and an explosive discovery!

Clara might just be a normal fifth grade student, but she just got her name into a paper, which she co-authored with Robert Zoellner. It all started in science class when Kenneth Boehr, her science teacher, brought out the ball-and-stick model and allowed the students to just play around. The ball-and-stick models are used to visualize simple molecules and often proves quite instrumental in explaining the angles and lengths of bonds right.

What Clara did was put the balls of different colours – representing different atoms – in a particularly complicated manner. When she asked Boehr whether this represented any real molecule, Boehr was at a loss. Instead of chucking out the work of the 10-yr old., he took a photograph and sent it to his friend Robert Zoellner, who works at HSU. Zoellner was interested and checked the HSU database only to find that there exists no such molecule. Zoellner confirmed that this should be a perfectly working molecule, but doesn’t occur in nature and hasn’t been synthesized as yet! 10-yr old Clara had made a discovery!!

Tetranitratoxycarbon resembles nitroglycerin, can store energy and can thereby be used as an explosive. Zoellner wrote a paper on this molecule which appeared in Computational and Theoretical Chemistry, and both Boehr and Clara are listed as co-authors.

Here’s another to be added to the list of explosive discoveries!

Story courtesy: gizmodo.com

Discovered: A Dark Matter Galaxy As Far As 10 Billion Light Years Away!

When galaxies form, they leave a lot of debris strewn around and this might reveal vital clues about the nature of dark matter, think scientists. Galaxies are believed to form by collision of smaller bodies of stars, which then equilibriate due to gravitational interactions. Even the Milky Way is believed to be surrounded by smaller galaxies, called satellites. A group of scientists looking at the Local Group, or a group of a few galaxies, including our Milky Way and the neighboring Andromeda, have found that the number of observed satellite galaxies is much smaller than expected from cold dark matter simulations.

The Local Group of Galaxies, with M33 being in the center

These satellite galaxies have unusually low number of stars and can be made up of mostly dark matter. These dark satellites could only be seen by the way they bend light due to their gravitation.

Searching for Dark Satellites

Attempts to find dark satellite galaxies in the Local Group had yielded a candidate at a redshift of z= 0.222, which works out to about 3 billion light years, which is quite close by cosmological standards. However, the number was just not tallying up; out of a predicted number of 10,000 only 30 showed up. Scientists decided that the Local Group case might be an anomaly and looked further out.

Infrared image of the 'dark galaxy'. Photo courtesy: David Lagattuta/ Keck Observatory

In a paper published in Nature, by the team of Vegetti (MIT), Lagattuta (University of California, Davis), McKean (Netherlands Institute of Radio Astronomy), Auger(University of California, Santa Barbara), Fassnacht (University of California, Davis) and Koopmans (University of Groningen, Netherlands) report to have observed a dark satellite galaxy at a redshift of 0.881, which puts its distance at about 10 billion light years.

Using General Relativity to See!

The method is a beautiful consequence of Einstein’s General Theory of Relativity, the modern theory of gravity. It says that mass bends space-time and light rays will follow this bent path as they travel. This allows us to use a technique called gravitational lensing. The technique is quite simple in principle. A dark matter object will act as a lens, bending light as it travels through it. If you have a light-emitting galaxy behind a dark matter galaxy, the light will get distorted and we will be seeing an image of the galaxy at a position where it is not really there. A beautiful demonstration of this is manifested as an Einstein’s Ring.

An Einstein Ring - Note the circular streaks of light.
How an Einstein ring forms.

Using the Keck-II telescope, one of these Einstein Rings was observed and a satellite galaxy was noticed at about 10 billion light years away, which has about the same mass as the Sagittarius galaxy. This is the first gravitational detection of a low-mass dark satellite galaxy at cosmological distances!

Exactly as predicted!!

The most exciting feature about this is that the mass calculations yield just the right mass for the galaxy to be consistent with cold dark matter simulations. It gives more credence to the hierarchical formation of stellar structures like galaxies as described by cold dark matter models.

Says Vegetti:

The existence of this low-mass dark galaxy is just within the bounds we expect if the universe is composed of dark matter that has a cold temperature. However, further dark satellites will need to be found to confirm this conclusion

Ignorance may not always be blissful, but it is certainly exciting most of the time!

Discovered: Two Earth-Sized Planets Around A Sun-Like Star

Scientists report the finding of true two Earth-sized planets orbiting a star very similar to the sun, using the Kepler telescope. The discovery was announced today. Named Kepler 20e and Kepler 20f, these are the smallest planets ever to be discovered.

An artist's impression of Kepler 20e. Image Courtesy: NASA/JPL/Caltech

The location and details

The stellar system is located 950 light years away from Earth. Both planets are about the size of Earth, with one of them being slightly smaller. This is important, since we now know that we can indeed detect planets the size of Earth in another stellar system. In the future, we might indeed stumble upon a planet, the size of the Earth, with conditions similar to our home.

The planets orbit the star a bit too close for comfort and the surface temperature is too hot to sustain the kind of life we know. It’s not a true twin of the Earth, but this does indeed bring us tantalizingly close to finding one.

+2 for Kepler

This is again a feather in the burgeoning cap of NASA’s Kepler space telescope, which was recently lauded for finding a planet, called Kepler 22b, orbiting another star in the Goldilocks region.

Both Kepler 20e and 20f are rocky planets and have an estimated mass of 1.7 times and 3 times the mass of the Earth respectively. While Kepler 20e lies at a distance of 7.5 million km away from the sun, making it 20 times as close to the star as Earth (150 million km), Kepler 20f, does slightly better at 16.5 million km. Kepler 20e takes a mere 6.1 days to complete an orbit around the star, while Kepler 20f takes 19.6 days.

There is no possibility of liquid water, or even an atmosphere on either of the planets. However, astronomers are hoping that, given the plethora of exoplanets being discovered, one will turn out to be just right’ for life.

Discovered: Monster Black Holes, The Most Massive Ones Ever!

There are monsters out there that are larger than anything we can imagine or know! This feeling was once again reaffirmed yesterday, when scientists published results that told them of two new supermassive blackholes that turn out to be bigger than any known so far. These two weigh in at an estimated 9.7 Billion Solar masses!

An artist's impression of the transit of a blackhole across a cosmic structure.

Supermassive blackholes are known to reside in the centers of galaxies. They are presumed to grow in size by gobbling up all matter and gases that come their way. The one at the center of our own Milky Way Galaxy is estimated at a million solar masses! If you think that is big, then be prepared to be blown away.

The Giants

The largest known black hole was the Messier 87 black hole. This weighed in at a gigantic 6.3 billion solar masses. A new blackhole found in NGC 3842 in the Leo cluster is a gigantic 9.7 billion solar mass monster. This is located 320 million light years away from us. Another one has been found in NGC 4889, in the Coma cluster. This one is 335 million light years away and is similar in mass. The event horizon or the boundary beyond which nothing, not even light, can escape the gravitational force of the blackhole is bigger than the radius of the orbit of Pluto! Compare this to the Milky way blackhole, whose event horizon, by comparison, is a small one at just about one-fifth the size of the orbit of Mercury.

The Centaurus-A quasar. The photo is a merged false-color photo. It contains data from the Chandra X-ray Telescope and ground based radio telescope. The short blue emissions are X-ray emissions (caught by Chandra) and the longer orange-yellowish plumes are radio-emissions. The central galaxy is captured in optical by Hubble Space Telescope. (Courtesy: NASA/GSFC/Chandra/Hubble)

These blackholes are found by looking at the emission of the accretion disks. Matter falling in becomes so hot that it emits light in many wavelengths, including X-Ray and radio. Scientists know objects which are just about the size of a typical spiral galaxy, or even smaller, but emit radiation, which is unusually high. Such structures are called quasars’, shortened from Quasi-Stellar Objects. They are believed to be powered’ by a central blackhole engine!

The research is going to be published in Nature on 8th December.

Discovered: Giant Lake Underneath Surface Of Jupiter’s Moon; Could Harbor Life

If there be life outside Earth, but within the Solar System, the greatest possibility lies on either Mars or Europa, Jupiter’s frozen moon. Europa has a thick crust of solid ice, underneath which lies a huge body of water, possibly uninterrupted. What has got astronomers really interested is the fact that just 1.8 miles below the icy surface, there may be a body of water as big as all the Great Lakes combined. This is above the liquid ocean, which sits even deeper from the surface. The possibility of life in this pocketof water is tantalizing.

An artist's impression of what the lake might look like. (Illustration courtesy: Britney Schmidt and team from Texas University)

Europa – a strange world

Europa was extensively studied by the spacecraft Galileo and found that it is a strange world. The heat from the Sun could never sustain the liquid ocean underneath, but the tidal forces due to Jupiter’s giant gravitational field provides enough energy for the ice to melt underneath and form the giant ocean. This ocean is thought to lie 100 km (or 62 miles) below the surface.

The frozen surface of Europa, as seen by Galileo (Photo courtesy: Wikimedia)

Peering down

The study was done by Britney Schmidt and her team from the University of Texas, and their paper appeared in Nature today, i.e. on the 17th of November. The discovery provides an impetus for the search for life as it might be located much closer to the surface than previously thought.

This will also fuel the search for other subterranean lakes, like the one already found. Future missions to Europa could well include melting through the ice crust and taking samples from the great lake. Studies indicate that the water may be salty, and we already know how much life salt water can sustain.

The next giant leap for mankind might well be digging just 3 kilometers on an icy world far far away and inspecting the samples obtained. Maybe, just maybe, we’ll find something living.

Discovered: A Planet Orbiting Two Suns – A Real-Life Tatooine

It’ a great planet to get a tan on, except for the minor detail that you may not make it back. A real-life Tatooine planet, orbiting two stars, has been discovered by the Kepler Space Telescope. This strange world is 200 light years away.

Tatooine is the name of the fictional planet of the Star Wars saga, where much of the story is based.

An artist's conception of the two-star planet - a real life Tatooine. (Courtesy: NASA/JPL-Caltech)

A Real-Life Tatooine

The discovery is stunning, since this is the first time such an object is being discovered. The planet is a giant one, slightly larger than Saturn, but made up of heavy elements. It orbits a binary star system. This marvellous system is named the Kepler-16 system, according to the Kepler Telescope’s cataloguing scheme.

This settles once and for all the question as to whether planets can really orbit binary star systems. The planet, Kepler 16b, is absolute proof that such a thing can happen.

The Star Wars team is thrilled. Visual effects supervisor at the Industrial Light and Magic firm, the company behind the Star Wars effects, John Knoll, says:

It’s possible that there’s a real Tatooine out there. Kepler 16b is unambiguous and dramatic proof that planets really do form around binaries.

How it was discovered

The planet was discovered by the so-called Transit Method. The exoplanet was discovered by noting the dimming of the stars light as the planet went in front of it. One of the stars is dimmer than the other and this too causes dimming of the brighter star’s light. Using these two effects and also knowing the radial velocity of the stars, the mass of the stars and the planet can be calculated. It is found that Kepler-16b is denser than Saturn, containing many heavy elements. It completes one orbit in 229 days. The masses of the stars, Kepler-16A and Kepler-16B, are 69% and 20% the solar mass, respectively. They orbit each other in 41 days. The three objects lie on the same plane, suggesting that they were created from the same cloud of gas and that Kepler-16b is not a captured planet.

The report came out in the journal Science’ today.

Discovered ‘Super-Earth’ Could Harbor Life: Is This Our Cosmic Neighbor?

According to a huge announcement by the European Southern Observatory, more than 50 alien planets discovered by its telescope could harbour life. Out of these 50, 16 are so-called super Earths’, or planets that are similar to our own, but bigger.

The Goldilocks Zone

Earth is unique in the sense that it is a rocky planet, contains water in liquid form and is at an optimum distance from the host star. This allows the temperature to be within habitable range, as well as supports diverse weather conditions. These are the signs that astronomers were looking for while scouring the sky with the exo-planet hunting telescope. Sixteen of the potentially habitable 50 were declared to be Earth-like.

An Artist's Impression of the Alien Planet (Courtesy: ESO)

Amongst these 16, one of the planets caught the astronomers’ attention. This Super-Earth, called HD 85512b, orbits its star within the habitable region a narrow region around the star where conditions could be optimal to support known forms of life.

Finding an Alien Planet

The ESO’s instrument of pride is the High Accuracy Radial velocity Planet Searcher (HARPS) telescope. The HARPS telescope is more a spectroscope than a conventional telescope. It measures changes in the spectral signature of a planet-star system. This simply means that the light intensity and wavelength both change and tracking these gives hints of a planet orbiting a star. Accurate measurements can give the mass of the planet, and sometimes, even the composition.

Planets tug on stars due to gravity and this makes the star wobble slightly. These radial velocity signals’ can be easily picked up by HARPS. The enormous resolution of HARPS ensures that it can even detect the slightest of wobbles.

HD 85512b is located pretty close by too. It is only 35 light-years away and is estimated to be 3.6 times more massive than the Earth. Orbiting in the habitable region’, the super-Earth could possibly support liquid water.

Only further studies will reveal whether this super-Earth is indeed inhabited by beings as complex as those found on Earth. Have we just found the home of our intergalactic neighbour?