Red Maple

Update: Diseased Trees are Potential Source for Greenhouse Gas

Recently, I shared an article with you called “Diseased Trees are Potential Source for Greenhouse Gas“. You may want to take a moment and familiarize yourself with the original article before going any further. In a nutshell, the article laid out some interesting new research by Yale Ph.D. candidate Kristofer Covey. His research centered around the amount of methane gas, well known for its contribution to the greenhouse affect, that trees were putting out. His research found that trees that were diseased with a common fungus had conditions favorable to the production of greenhouse gases. Most of the trees were pretty old between 80-100 years old.

Red Maple
Red Maple which is a significant source of methane. (© Copyright Derek Harper and licensed for reuse under this Creative Commons Licence)

The reason I am updating this article is because I was able to get in contact with Kris and found out a couple pieces of information that I thought might be worth sharing with you the reader. I had two questions for Kris and he was kind enough to respond. Below, you can see the questions I asked with his answer following.

Question #1. – I am curious how you or the authors feel this affects the global warming debate?

I think the most important thing here is that although it appears as though trees may be producing and releasing significant amounts of methane, they still offer significant climate benefit. Our results indicate that in the stands studied the methane being released is equivalent in it’s climate warming effect to 18% of the carbon sequestered annually. If, as we suspect, this phenomenon is widespread then there would be implications for carbon markets and other programs that make use of forests as a mitigation tool in climate change action.

Question #2. – What potential remedies could be put in place to eliminate the source of this fungal activity?

While there aren’t practical ways to limit fungal infection in forest trees (these fungi are normal and essentially ubiquitous agents); however, we did find species level differences (red maple seems to produce far more than the other species studied ex.) indicating that there may management strategies that could optimize the tradeoff between carbon sequestration and methane production. That said, there’s a great deal of questions to ask before specific recommendations could be made. We are only now recognizing this pathway exists!

I thought it was important to share this information because it clears up some concern that trees aren’t destroying our atmosphere. Basically, even the diseased trees still clean up bad carbon but just not as much as a healthy one could.

For more information about Forestry studies at Yale, visit

Published by

Darrin Jenkins

Darrin is an IT manager for a large electrical contractor in Louisville KY. He is married and has 3 kids. He loves helping people with their technology needs. He runs a blog called Say Geek!