Challenging Einstein: Faster-Than-Light Neutrino Result From CERN And Explaining What It Really Means

Keeping Time

For keeping time, CERN uses a timing system based on synchronization by four nearest GPS satellites. CERN has something called a common view’ GPS, which synchronizes the clocks at CERN and at OPERA. Furthermore, CERN uses atomic clocks to provide a time-stamp. Since OPERA is sitting at a higher altitude than Gran Sasso (the lab to where the neutrino was beamed), you’ll have to correct for gravitational effects. Clocks run slower in a weak gravitational field than in a stronger one, according to General Relativity (GR). As the gravitational field strengths differ, the clocks lose synchronization. These clocks are regularly re-synchronized using GPS to take into account General Relativity effects.

Measuring the time of flight (TOF) of the neutrinos. Forget the intricate details. Concentrate on the Cs clocks and GPS synchronization
Accuracy of measurement

They’ve measured a distance of 732 km with an accuracy of 20 cm! They’ve measured time to within 5 ns accuracy. The whole of the apparatus might contribute an error of 7.4 ns to the time of flight, well below the 60 ns discrepancy.

Why am I really going into all these gory details? It’s just to convey the impression that this is not really another crackpot claim you keep hearing about. This is really a well-done experiment. They’ve sincerely worked out all details and tried to plug in as many loopholes as possible. The effect still stays.

One might ask the following questions: what about effects external to the whole apparatus, like tides (which slow down the Earth’s rotation, albeit by a tiny amount) or atmospheric fluctuations (which would change the GPS signal speed through air, introducing an error in the time)? It is in answering these questions that one gets to know how far the CERN scientists went before publishing these results. The experimental analysis was done for 3 whole years, using as many as 16111 events! By the law of statistics, this will reduce the error of any quantity by more than 126! (The error in a quantity is suppressed by the square root of the number of statistical points. Square root of 16111 is just above 126!) Furthermore, tidal effects are periodic and would cancel out over three year periods. The same goes for atmospheric fluctuations.

OPERA even took care of tectonic effects. Notice the clear jump in the values when the 2009 earthquake hit. The continental plates had moved by a mere 3 cm.

The scientists even took into account tectonic shifts (graph above). They factored in the effect of the 2009 giant earthquake and tsunami, taking into account the fact that the tectonic plates had shifted by 3 cm! No wonder, Nobel Laureate Sam Ting called the experiment beautifully done’.

10 thoughts on “Challenging Einstein: Faster-Than-Light Neutrino Result From CERN And Explaining What It Really Means”

  1. Most amazing article Debjyoti. If I didn’t know you previously I would have refused to believe it.
    Nevertheless, If this is true, it is going to change everything every single facet of physics.
    I too have my faith in, as you say ‘Grand old man of physics’ and totally understand the irony of the present day physicists here.
    Thanks a lot for this wonderful post.

  2. Thanks for a exhaustive and engaging article. After reading the original paper from arXiv, I was also shaken to my core and thought about the progress in Physics for last century. The results are too shattering and at times amazingly unbelievable. What I personally believe is that this may open a complete new horizon in Physics that may have not been endeavoured before and also might have been ignored on the face of existing theories. Special theory of relativity is confidently not so easy to prove wrong, most probably there are some errors with the experiment itself or we are interpreting something in a wrong fashion. I hope the later is true and that may bring us a complete new understanding of how neutrinos work.

  3. All of my investigations seem to point to the conclusion that they are small particles, each carrying so small a charge that we are justified in calling them neutrons. They move with great velocity, exceeding that of light – Nikola Tesla 1932

    Experimental tests of Bell inequality have shown that microscopic causality must be violated, so there must be faster than light travel. According to Albert Einstein’s theory of relativity, nothing with nonzero rest mass can go faster than light. But zero rest mass particles can go faster than the light. Neutrinos have a small nonzero rest mass. Faster than light interactions are a necessity and they provide the non local structure of the universe. We should understand the relation between local and nonlocal events like the dynamics of universal structure. In any physical theory, it is assumed that there is some kind of nonlocal structure violates causality. If neutrinos are traveling faster than light, then neutrinos must be on the otherside of the light barrier going backwards in time, where the future can interact with the past.

    – Nalliah Thayabharan

  4. I agree with Ghosh. This will be a great to have a new understanding of physics. I know it’s hard to believe Relativity is wrong but it was also hard to believe classical physics (which also explained hundred of experiments) were wrong when first quantum experiments appeared.

    And this will not be the first experiment. Last year observations of John Webb about physical constants not being really “constant” through the universe also suggest that Einstain’s equivalence principle is wrong.

    He indeed was a genious, but sciences is not about having “faith in a Grand old man of physics”. Science is about proving and no matter how fine a theory looks, nature has the last word.

    1. I agree. Your point is very well taken. However, SR has had tremendous success. Repeating that success is not easy. I know that no one should have faith in anyone, no matter how big a name he/she is, but the more likely scenario at this moment is that there is some mistake in the experiment rather than relativity being wrong. That’s all that I intended to say in the article.

  5. CERN neutrino moves faster than the light speed. Is Einstein wrong?.
    “Looks like Einstein may have been wrong — An international team of scientists at CERN has recorded neutrino particles traveling faster than the speed of light”. “measurements over three years showed the neutrinos moving 60 nanoseconds quicker than light over a distance of 730 km between Geneva and Gran Sasso, Italy”. “If confirmed, the discovery would overturn a key part of Albert Einstein’s 1905 theory of special relativity, which says that nothing in the universe can travel faster than light”…/scientific-breakthrough-physicists-at-cern-have-recorded. According to H particle-paths hypothesis (in site, a particle, e.g. photon, moving in spatial medium, Sec. 7(4)3, part A (of the site), has irreversible path-length, Sec. 2(4)4, of expanding characteristic of configuration and time’s arrow; while, a particle moving in mass medium, Sec. 7(4)3, part D, has irreversible path-length of contracting mode of configuration at opposite sign to the former and time arrow reversal. Therefore, neutrino contrary to photon that reflects by the mirror can penetrate in mass medium. Thus, its total time travel just during the measurement is reduced respect to that of photon in this regards; please refer also to please refer also to Sec. 5(16)11, Sec. 5(15)2b, and Simulation 8(7)2, E5a, item 17E. Factually:
    A) Just at the moment of neutrino detection (or striking) by detector, according to Note 5(16)7, g2, contractons (as signal) is emitted spontaneously, Sec. 7(4)2f, part c, within H hall-package tunnel, Sec. 5(9)3d, part c, in backward path of neutrino emission towards the source, Fig. 5(10), i.e. completeness of measurement. In other words, the neutrino path is composed of two paths in vacuum and mass media as stated above with two different characteristics path-lengths of opposite sign.
    B) The mass medium of neutrino travel is its detector “The OPERA neutrino detector at LNGS is composed of two identical Super Modules, each consisting of an instrumented target section with a mass of about 625 tons followed by a magnetic muon spectrometer. Each section is succession of walls filled with emulsion film/lead units interleaved with pairs of 6.7 6.7 planes of 256 horizontal and vertical scintillator strips composing of target Tracker (TT). The TT allows the location of neutrino interactions in the target.” ArXiv: 1109.4897v1 section 2.
    As a result, the neutrino like other particles may moves equal or than less than light speed in free vacuum. “The findings may need many runs and checks to be confirmed. Once confirmed, it raises many questions, including why such an effect wasn’t noticed before. The big question would be this: What happens to Special Relativity, which is an extremely reliable theory?” › Science; please refer also to Sec. 2(6)2a. Based on above discussion Einstein is in a right way, i.e any particle cannot eceed the light speed in normal vacuum.

  6. I am not trying to start an argument or seem to be condescending, but what use is this type of technology?
    What can be done with neutrinos that can move faster then light? Would this be a step in developing travel or exploration at these speeds for man or machine?
    Would someday our NASA program be able to shoot a camera ‘light years’ into space and see things we can only imagine now? This is interesting and I am in no way belittling it I swear, but trying to find the relevance.

    1. Your question is perfectly valid. The point is that not everything that happens in basic sciences has to have an immediate application in technology. Remember that the atomic structure came about and that didn’t have much direct effect on existing technology. However it was instrumental in unraveling the properties of Silicon, which is a mainstay of the semiconductor industry, as you know.
      If this result is actually true, we junk out 100 years of science at least and that comprises a lot! Surely, I don’t have to emphasize the seriousness of that.

      1. thank you and yes point well taken.. I guess i was just curious as to the ideas of where this could lead… and yes you are right to throw out 100 years of past science and ‘discoveries’ would be heartbreaking to many who have made those old ways their life’s work.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>